
Everscale Whitepaper
By Mitja Goroshevsky

‘It is impossible to have a radical philosophy
without at first sounding like a lunatic or a
moron’
— Michael Malice, “The Anarchist Handbook”

Abstract

Bitcoin has eliminated trust when conducting peer-to-peer financial transactions
by inventing the economic incentives and technology to run a decentralized computer
network. Ethereum has invented Turing complete-programming for it, which helped
create more complicated financial instruments, such as tokenized assets, collateralized
loans, liquidity pools or synthetic assets. In this paper we describe the architecture,
components, governance mechanism and financial model of Everscale — a trustless
worldwide operating system.

1

Preamble

‘We, the undersigned Free TON Community,
Validators and Developers, hereby announce the
launch of Free TON Blockchain upon the
principles and terms stated in this Declaration of
Decentralization.’

— The Declaration of Decentralization[1]

Everscale is a decentralized global blockchain network launched on top of Ever OS[2] on
May 7, 2020. On November 10, 2021 by the decision of its community it was renamed to
Everscale from Free TON. Its technology has roots in the TON blockchain, this will be
discussed in some more details throughout this paper. Sometimes it was simply impractical
to rename everything. For example, the TONIX blockchain unix file system was not
renamed, etc.

Everscale is a new and unique blockchain design that proposes a scalable decentralized
world computer, paired with a distributed operating system — Ever OS.

Ever OS is capable of processing millions of transactions per second, with Turing-complete
smart contracts and decentralized user interfaces.

Everscale presents some new and unique properties, such as dynamic multithreading, soft
majority consensus and distributed programming, which enable it to be scalable, fast and
secure at the same time. It is governed by a decentralized community founded upon
meritocratic principles via Soft Majority Voting protocol.

Everscale has powerful developer tools, such as compilers for Solidity and C++, API, SDK
that includes client libraries for 13 programming languages and all popular platforms,
local node for DApp testing, CLI tools and a range of decentralized browsers and wallets
empowering many applications in DeFi, NFT, tokenization and governance domains.

2

Chapter one. Everscale

Decentralization

1 Cryptocurrency provides economic incentives to the decentralized computer we call blockchain
and is inseparable from the technology that blockchain is empowered with. Everyone who
says otherwise is just protecting outdated values for their own benefit. The reason for this
inseparability is the “decentralization” property of the system. The whole raison d’être
of distributed computer technology is its ability to be run by parties which do not need
to trust each other. Please note that the emphasis is not on “do not trust” but on “do
not need to trust”. This is an important and powerful concept. There is already tech-
nology which can run distributed systems. These systems can scale, they have sharding,
consensus, advanced databases, programming languages, they are proven by many years
in production to deliver robust performance. There is just one little thing, one detail, one
tiny principle you need to obey in order to use them: you must trust someone who runs
them.

2 That trust assumption is how we, as a human race, surrendered our freedom to a few
tech corporations and a handful of government organisations around the world. This
trust assumption is now almost unilaterally accepted by people as something mandatory
to protect them, to provide security guarantees, economy of scale, easy to use interfaces,
usability, utility and so on. Let’s call them the conveniences of surrender. The evil gifts.

3 The inability as a group to protect ourselves which leads to a delegation of power is a
compromise we make with our liberal values. As human beings following the laws of
history, any time and every time we have a technical ability to end such compromise — we
must.

4 Mr. Wilhelm Steinitz, the first chess world champion and the founding father of chess
theory, has formulated one of the important strategic principles — if a player gains a
positional advantage over another, it must attack to win[3]. Our life is no chess game, so
the price we pay for losing could be catastrophic.

5 One of the founding fathers of the United States of America and its second president John
Adams, stated: “Our Consolation must be this, my dear, that Cities may be rebuilt, and a
People reduced to Poverty, may acquire fresh Property: But a Constitution of Government
once changed from Freedom, can never be restored. Liberty once lost is lost forever. When
the People once surrender their share in the Legislature, and their Right of defending the
Limitations upon the Government, and of resisting every Encroachment upon them, they
can never regain it.”[4]

3

6 Or if one prefers George Orwell’s shorter version: “We know that no one ever seizes power
with the intention of relinquishing it.”[5] Over 70 years later, we couldn’t be any closer to
1984.

7 Fortunately, Satoshi Nakamoto invented the economic incentives and technology for run-
ning a decentralized computer network. Such a supposedly simple idea gave human individ-
uals an advantage in the game against a human collective. Ethereum has invented turing
complete-programming for it and Everscale has invented its operating system. The Oper-
ating System of Freedom, that is. The tool to fight a Borg within us[6] , the conveniences
of surrender, the evil gifts.

Meritocratic Token Distribution

‘Either products do actually exchange in the
long run in proportion to the labor attaching to
them—in which case an equalization of the gains
of capital is impossible; or there is an
equalization of the gains of capital—in which
case it is impossible that products should
continue to exchange in proportion to the labor
attaching to them.’

— Eugen von Böhm-Bawerk, “Capital and
Interest”[7]

8 One of the most advanced arguments against the trustless system is that such a system,
as decentralized as it may seem, is only so on a level of its protocols. Such a network
will presumably scale back into centralization when needed to reach certain decisions for
continuous operations requiring social consensus. That once decision making is involved,
it necessarily will lead to centralization if the system wants to be somewhat efficient. And
despite the efforts of the crypto community to bring decentralization into the protocol
governance itself there are still plenty of examples where this argument prevails. Bitcoin
is still keeping its software code base in a centralized repository. Very few Ethereum and
Bitcoin mining pools control most of the mining power of both networks. The blockchain
foundations are everywhere, centrally running core development of their protocols and
distributing grants to developers teams. Most of the newer proof-of-stake networks pre-
sold their tokens to a few large venture investors and now control their grant system and
protocol development. In general most of the leading blockchains tokens are controlled by
a very few investors.

9 We will discuss how Everscale tackles all those issues throughout this paper. Let’s start
from the most obvious one, how the tokens are distributed in the first place.

4

10 One of the characteristics of proof-of-stake (POS) design is that it requires validators to
have a material stake in the network which they would be afraid of losing. This assumption
provides basic game-theory ground behind POS. Participants are motivated to ensure the
correctness of the blockchain by the possibility of losing their stakes if they don’t.

11 Usually POS blockchains begin with selling their tokens to future validators to create a
starting point of this game economy. In Everscale it was very clear to everybody from the
very beginning that we would never sell tokens to anybody. The puzzle that we had to
solve was how to distribute the tokens in a way permitted by the game theory of POS.

12 I believe we found a revolutionary solution to that problem. It’s something we call the
Meritocratic Token Distribution (MTD) model. It starts with the community member
proposing a Contest in which all other members of the community may participate. The
contest is discussed and if agreed that the end result of this Contest will benefit the com-
munity and the network as a whole, the Rewards for it is voted for, the Jury is selected, the
participants are providing solutions according to the contest specs, the Jury is voting for
the solutions, and tokens are distributed to the winners. All those activities are concluded
on-chain.

13 So, to summarize, instead of minting tokens by burning electricity or for production of
empty blocks, the tokens are distributed meritocratically. Of course, Everscale is paying
for empty block production as well, but the mechanism of such payment is quite different,
as will be discussed below.

14 Yet even with probably the most advanced and decentralized method of token distribution,
the question remains that if for a right market price (as high as it might be) the tokens
will eventually end up with the same crypto investor, what difference does it make how
they were distributed in the first place?

15 The difference between Meritocratic Token Distribution and public or private placement
of those tokens is attributed to two facts: a) when tokens are distributed meritocratically
it ends up in the hands of different entrepreneurs building the network ecosystem, not just
in the hands of core protocol developers, resembling the deployment of venture capital.
Needless to say, this is what empowers the economy; and b) it has a by-product: governance
tokens1 of the project the entrepreneurs had created during the contest they participated
in.

16 If entrepreneurs are in it for the long run with the project they created, they will need
tokens to pay for gas and their bills. These tokens will end up on the market. Here usually
lies the disconnect between the projects that were partially created by the meritocratic
process and the usual token distribution. The value of that token is created only by the
utility of that decentralized platform through the gas payment, unless the token itself also
becomes a governance token for all the projects supported by it.

17 Let’s imagine a community Giver that, as part of the MTD process, will ask contest
participants to create a governance token for their contest submission and submit some

1Governance token is a token that gives its owner some decision making rights in the project.

5

portion of that token under that Giver’s control in exchange for a contest winning payment.
Now we not only have the Meritocratic Token Distribution mechanism but Decentralized
Participation as well.

18 For example, a Decentralized Name Service (DeNS) is used as a basic filename and directory
structure in the Ever OS file system. The rules of this governance token may allow those
who hold it to execute certain rights regarding the project. By itself, they may or may
not have any monetary value. Nevertheless, usually such tokens will give certain monetary
rights in the project, such as the case with DeNS where they could be exchanged or burned
against for a certain amount of EVERs collected by the project as payment for registrations
of DeNames.

19 Now, if a governance token provides certain decision power in the project but can be
exchanged or burned against the project’s collected fees, we have a situation where a holder
can not receive accrued fees until and unless she exits the project. The exit price may be
automatically calculated as total native tokens collected divided by the total amount of
governance tokens outstanding multiplied by the amount of tokens to be exchanged. Of
course apart from exiting the project, the holder could trade such tokens with a premium
on one of the Everscale decentralized exchanges. It may be wise to add a mechanism which
would mint such governance tokens as a declining function (similar to halving) versus a
fixed rate. Additionally, a mechanism could be imagined where users are able to commit
funds directly to the project account to mint such tokens i.e. initial decentralized offering
(IDO).

Governance

20 Everscale governance is very simple — anyone can upload a proposal for which the com-
munity votes with their WEVER (Wrapped EVER) tokens using the Soft Majority Voting
(SMV) mechanism.

21 Soft majority voting is a transparent voting process with advance announcement and clear
deadline. If members don’t have an opinion and/or are reluctant to vote, it is assumed
that they are neutral. Instead of making an attempt to force everyone to vote for every
decision, SMV essentially allows decisions by those who care.

22 The metric for passing a decision is the difference between % of Yes minus % of No. For
example, if 10% of voters said Yes and none said No, then it is assumed the decision is
sufficiently supported and there are no objections. At the same time, if all members voted,
then a simple majority rule applies: 50%+1 vote for passing a decision. When we connect
those two dots on a graph with % of Yes and % of No axes, we get a “soft” simple majority
threshold line.

23 For important decisions like amendment of constitutional community documents, we can
draw a “soft” super-majority threshold line (see Diagram below). Soft majority voting
mechanism is programmed on Everscale via SMV Smart Contract.

6

24 In his work “Moving beyond coin voting governance” Vitalik Buterin identifies vote buying
as a major threat to the decentralized on-chain coin voting governance model. It describes
at length a possibility of an attack on a governance system by an automated smart contract
that auctions voting rights in exchange for some tokens. The SMV protocol is a unique
voting mechanism proposed by Pavel Prigolovko, optimized for low participation. It is not
a simple token holders voting solution. In fact, by addressing a low participation problem
it also has other implications. Remember that in SMV each negative vote increases the
decision passing threshold. Therefore the attacker will run into ever increasing cost of vote
buying because the honest participants’ negative votes have more voting power. In an
important decision the attacker may need to buy 75% or more of all tokens for the decision
to pass. In effect this is a form of quadratic voting already.

25 As mentioned above, it is quite a simple system; yet taken in conjunction with the Meri-
tocratic Token Distribution, it becomes a very powerful tool for solving many governance
problems.

Economy

26 Our target is to create an economy for the operating system whose main distinguishing
asset is its malleability.

27 As some of you may know Nasim Taleb did not invent antifragile[8]. It was Andrei
Tarkovsky’s invention, as he put it in “Stalker”: ”Weakness is a great thing, and strength

7

is nothing. When a man is just born, he is weak and flexible. When he dies, he is hard
and insensitive. When a tree is growing, it’s tender and pliant. But when it’s dry and
hard, it dies. Hardness and strength are death’s companions. Pliancy and weakness are
expressions of the freshness of being. Because what has hardened will never win.” We
believe “malleability” is a good term to replace “antifragile”.

28 “According to the current economic teachings, money has three main characteristics:
medium of exchange, unit of account, and store of value. This definition may have been
correct 100 years ago. Today it is nothing but a lie[9]”

29 “In fact it would probably be correct to say that the money in the modern economy must
gradually lose its value in order to be an attractive medium of exchange. Quite simply
when a person holds on to something that loses its value over time, it will most likely try
to exchange it with something more valuable. Such a person would not hesitate going to a
shop and buying not only things they dearly need, such as pizza, but also things they do
not need so much, such as entertainment, or things they don’t need at all, such as a new
phone.”

30 Since EVER token is not money, it should not be used for network usage fee payments, or
such fees will constantly diminish. In order to achieve that, the dynamic gas price should
be introduced, but unlike in other blockchains, it should not be set forward by network
validators. In general, letting validators decide on transaction inclusion, order and price,
has been one of the worst ideas of our time.

31 Yet, the price for gas should not be too low, or better, should not be arbitrarily low, by
reason of spam prevention. Imagine: if the network fees are too low and the network has
an upward capacity limit, it is quite simple to calculate how much money one would need
to pay to buy out 100% of such network capacity for X amount of time in the form of
shilling (or penny) attack. If the price is very low, the network will constantly be out of
gas.

32 Thus, let’s have a dynamic network price function derived from the number of transactions
as a percentage of current perceived network capacity and some starting gas price which
could be calculated from a perceived cost of running a validator node necessary to run
Ever OS, multiplied by the number of such validators necessary to run current EVER
Kernel configuration. As will be discussed later, Everscale is almost infinitely scalable,
which makes things easier in terms of gas payments, but still in order for it to scale more
validators need to join, therefore gas prices should reflect the growing need to attract new
validators. The transaction price should start from almost zero and once it reaches the
capacity of a Processing WorkChain (see WorkChains) the total price should accommodate
the launch of a new WorkChain with a minimum set of Validators. Moreover the premium
of the gas price increase should not be paid to current validators, but should be returned
to the Validator Giver in order to accommodate the start of a new workchain.
Let X-axis be the workchain capacity fullness, let Y-axis be the gas price. Let the initial
price “a” be very close to 0. Let’s choose a simple power function so that the area under
the graph is equal to 1. Let f(x) = a+ b ∗ xn. Then the integral of this function from 0 to

8

1 is equal to a + b/(n + 1) = 1 Neglecting the small value of ”a” can put b = n + 1 Then
f(x) = a+ xn ∗ (n+ 1)

33 The higher the degree, the more “sharp” the function. At point 1, the function takes on
the value (a+ b) ∼ b

34 Another aspect that needs to be discussed is a payment for empty blocks. After all, without
such payments invented by Bitcoin, there would be no cryptocurrency. In the light of this,
we believe there should be no emission of new EVER.

35 All EVERs were organized at launch into three accounts we call “Givers”: Validator,
Developer and Governance Givers2. The tokens from these Givers are distributed through
the MTD mechanism by the community.

36 The Validator Giver should pay for every block validators produce (1E for shardblock and
1.7E for Masterblock, changeable only by the community decision if necessary). The total
supply of tokens should be kept to around 2 bln EVERs. No new tokens should ever
be issued. When Validator Giver runs out of tokens, presumably there will be no empty
blocks.

37 Following the malleability principle, the economic system of Everscale should accommodate
for other forms of token distribution or public funding as the community would see fit from
time to time. The new givers would be formed, funds would go to support experiments in
funding models. It is our firm belief that the guiding principle to all these experiments,
though, should be that no funds are distributed to a project without an entrepreneur
behind it having vested interest in it and risk associated with it.

###

38 While trustless gold can decentralize central banks and trustless applications can decen-
tralize finance, only a trustless operating system can decentralize the economy and get rid
of monopoly altogether.

2It is currently called “Referral Giver” which we believe needs another name, we suggest “Governance
Giver” instead.

9

39 By monopoly we mean control over any market by a single entity. In economic theory
the monopoly is always referred to in a negative connotation because it destroys the open
market competition, which, in turn, affects the price and motivation system behind free
market economy thus greatly diminishing progress. In most modern economies monopolies
are prohibited by law. Yet, the fight against them is spotty and ineffective as almost
everything governments usually do precisely because any government is a monopoly by
itself. Sometimes they execute monopoly power over just a few aspects such as the use
of force, and sometimes they monopolize almost everything. Therefore let’s assume there
is no difference between government monopoly and enterprise monopoly, as they all are
equally bad. Bottom line is, there is no effective mechanism to fight against monopoly in
a modern society.

40 Cryptocurrency can solve that problem. First of all, it is almost impossible to purchase
another project in a decentralized world because of a potential fork[10]. The power of
decentralized applications runs in the immutability of its system software, yet at the same
time in the free and open nature of its source code. Governance tokens, unlike shares in
a company, give very little control over the project software, management or operations.
Such decisions as projects merge can be done in a friendly manner by simply transferring
the talent from one team to another, but nobody in this case would prevent a project from
being picked up by another team, continued by its community or simply forked. That
changes an economic reality completely, rendering all asset holders protection agencies
unnecessary in the future when blockchain technology and cryptocurrency will dominantly
empower the world economy.

41 Technically, though, in order to achieve that future, a design should propose a truly decen-
tralized, distributed, secure, sustainable, scalable, low latency world computer, together
with an operating system.

42 This paper discusses the design of such a system from three perspectives: technical, gov-
ernance and economic. Because of the sheer volume of the topics to cover, it should be
viewed as a framework of ideas and design blueprints to be further discussed in separate
documents, some of which are already available (links to them will be provided throughout
the paper), and some are still under development.

10

Chapter two. Ever Kernel (EK)

Context

43 In 2018 Dr. Nikolai Durov[11] released a series of papers in which he described a Virtual
Machine, network and consensus protocols, which were dubbed TON. In late 2019 a pro-
totype of C++ network node implementation was released by Dr. Durov and his team.
Starting from 2018, TON Labs, using just documents available at that date, started to
work on a parallel and completely independent implementation of the protocol in Rust
programming language. In the first half of 2020 the full node implementation in Rust was
released followed by the validator node release in late 2020.

44 In computer system terms we view Dr. Durov’s design as a distributed virtual micropro-
cessor or network operating system kernel, thus it is called Ever Kernel or EK version 1.0
or similar, throughout that paper. While the design laid a very solid foundation, to answer
the requirements of a truly decentralized, distributed, secure, sustainable, scalable, low
latency world computer, it had to be developed further. When TON Labs created Ever
Operating System and community has launched the Everscale network, the design and
real usage requirements of the network demanded not only additional functionality and
modules on top of the Kernel, but quite significant changes in the underlying architecture
itself, which is often the case in any computing system design evolution (let’s call it Ever
OS Kernel).

45 The Ever Kernel provides a system with the following components: virtual processing en-
gine (Virtual Machine), network protocol stack responsible for addressing, virtual messag-
ing buses connecting Virtual Machines (DHT, ADNL, Overlay, Broadcast and RLDP pro-
tocols), and a consensus layer that synchronizes and validates the execution of smart con-
tract code on Virtual Machines of different physical computers over the network (Catchain,
BFT).

46 To that stack of EK protocols we have made several additions that will be discussed in
some details later in this section:
REMP (Reliable External Messaging Protocol) MBPP (MasterChain Block Propagation
Protocol) SMFT (Soft Majority Fault Tolerance) MSRP (Masterchain Slashing and Re-
covery Protocol) DDVS (Distributed Dynamic Validator Set)

47 Many enhancements and optimizations are constantly made to the existing EK protocols,
but they are largely falling outside of the scope of this document. It is important to
mention though, that some of these changes are incompatible with the first version of Ever
Kernel. We will concentrate in this paper just on the significant changes we made, leaving
the smaller patches and changes out. We will discuss the code handling, bootstrapping

11

and upgradability issues in a separate chapter.

WorkChains

48 WorkChains in Ever Kernel v1.0 are not supported apart from the basic (0) workchain
while they are fully supported in the Ever OS Kernel. Many rules and messaging protocols
to support direct interaction between Workchains were added.

49 One should remember that all Validators of a WorkChain store all the data of that
WorkChain exchanging all the blocks produced within such a Workchain and making it a
Shard in a strict database design definition.

50 WorkChains could be viewed as distributed processor cores or even as distributed periph-
eral functionality. They can have different functionality, but they share the same block
and consensus structures. Some WorkChains will simply scale the number of accounts
out of the practical limitation of a single WorkChain to process data related to a certain
number of addresses (let’s call them “processing WorkChains”). Others will support addi-
tional functionality, such as DriveChain for persistent storage, or IceChain for long term
archives as will be explained in some details later, and so on (let’s call them “peripheral
WorkChains”).

51 Processing WorkChains are created dynamically at the time of the elections if the total
capacity of all current processing WorkChains are utilized by about 90%, and some other
parameters are met. When added, the Processing WorkChain starts operating once valida-
tors from a dynamic validator set are allocated to this workchain and synchronized. The
address space of such a WorkChain is a division of the address space of the latest available
Processing WorkChain, similar to the thread address split/merge mechanism.

52 Peripheral WorkChains are added by the decision of the Network Governance.
53 The validator set with the same capabilities is assigned to a new WorkChain during the

elections (or, more precisely, during the D’Elector contract execution, see below).
54 Other types of WorkChains could be theoretically imagined, but the rules of a block com-

mitment into MasterChain should be followed. Theoretically, one can also imagine that an-
other blockchain could be added to Ever OS as a workchain if validators of that blockchain
decide to convert the block into a necessary structure and post capabilities required for
such a blockchain. In effect, it will turn such a WorkChain into a decentralized bridge to
that other network. For instance, to add Ethereum 2.0 network as Everscale WorkChain,
the stated capabilities should include a certain Ethereum client for EVM and ETH 2.0
protocol processing, the ability to wrap Ethereum blocks into Everscale block structure
and proof that such Validator is also a validator in Ethereum. Those WorkChain valida-
tors will of course deposit their stakes into the D’Elector contracts and produce the same
Everscale consensus guarantees for the Ethereum network while completely disregarding
that network’s own security assumptions, making it in a way even more secure (as both
would run in parallel).

12

55 There are many ways to submit such transactions on the Ethereum side. For example this
workchain validators could form some Layer 2 solution for Ethereum, designs of which are
discussed in the Ethereum community at length and are not in the scope of this paper.

56 Gas would be paid for transactions within such WorkChain in Everscale native currency,
while EVM transactions would be paid in Ether. Yet, nothing may stop these WorkChain
validators from supporting transactions within their WorkChain, which will, for example,
execute a conversion of Ethereum native currency to Everscale native currency, or vice
versa, provide proof of blocks, transactions etc. The number of validators and their stakes
will therefore guarantee that WorkChain is correct.

57 Another difference between Processing and Peripheral Workchains is their address space.
The peripheral WorkChains may have special address prefixes while Processing Workchains
share the same address space.

58 One of the hardest problems in the multi-sharded approach has been inter-shard commu-
nications. If our system is heterogeneous, then we can assume it may not need any specific
guarantees with respect to the messages that one such shard sends to another. Yet, it
almost certainly creates quite an awful user and developer experience. That would be like
adding a horizontal layered approach to the vertical layered approach discussed above. The
more layers in which a developer application resides, the more difficult it is to use.

59 Of course, it is immensely more difficult to design a homogeneous system. In a truly ho-
mogeneous system we want to abstract interaction of different system components between
each other and the user. So for a smart contract in one thread of a particular WorkChain,
it won’t make any difference sending messages to another smart contract, no matter which
thread or WorkChain it resides in.

60 There are two situations when a contract is sending a message to another contract: (i)
when the contract knows the exact address of such contract and (ii) when it does not, in
which case it will calculate the address (see “Distributed Programming”).

61 When a contract sends a message to a Peripheral Workchain, it must know the destination
address and a prefix of such a WorkChain, which is as logical as sending a document from
an editing program to a printer for instance.

62 When a contract emits an internal message to another address, and if this address is in
another WorkChain, the internal message will be converted into REMP message and sent
externally (see REMP below). Such messages are sent to the corresponding WorkChain’s
thread validators and placed in a ”message queue catchain” (MQC), which is part of the
REMP protocol. But in addition to regular external messages, if the external message
originated in another WorkChain, it has a special status of “internal-external” message
(IEM), to which a proof of such a message being part of the particular WorkChain block
is added. Such messages are then added to the destination’s WorkChain thread block just
as any internal message of that WorkChain would be.

13

Multithreading

”A thread is a unit of execution on concurrent programming. Multithreading is a technique
which allows a CPU to execute many tasks of one process at the same time. These threads
can execute individually while sharing their resources.”[12]

63 Multithreading in the Ever OS Kernel allows for parallel execution of smart contracts by
subgroups of the validator set that share the same data. It allows for fast validator rotation,
execution parallelism and other features not covered in the Ever Kernel 1.0.

64 Multithreading parallel execution enables each shard in a EK to scale to execution capacity
levels only constrained by node network connections and interfaces.

65 Validators within a WorkChain are all divided into rotating groups, each of such groups
serving only a subset of smart contracts, something we call ”threads”, dividing accounts’
address space by their number. Number of threads is a configuration parameter of such
WorkChain, which can be adjusted depending on a network load to exchange all of the
blocks of all of the threads. With a global increase of network throughput, the number of
threads could increase.

66 Our WorkChain has a practical limit of about 256 threads currently, because of network
load to exchange all blocks of all threads. With a global increase of network throughput,
the number of threads could increase.

67 Since all threads share the same data, it is incorrect to call them “shardchains”; the term
“thread” should be used instead. Also because of that same reason, there is no need for
hypercube routing of the messages between threads as they only add unnecessary delays
and produce many more messages.

SMFT (Soft Majority Fault Tolerance) Consensus

68 EK has a BFT-based consensus protocol. It has 4 phases (approve, vote, pre-commit and
commit) in order to ensure the consensus is reached. Basic assumptions of BFT consensus
is that at least 66% of all network validators are honest. It means that a collusion of more
than 33% of validators can result in a network halt. If more than 66% of validators are
colluded then network corruption can occur.

69 When a validator detects a non-valid block, it broadcasts a Reject message.
70 One of the problems of any BFT consensus-based network, is that in order to reach a

consensus, it has to pass all the protocol phases, which results in network delays because of
the number of messages the nodes need to exchange. In the case of Catchain it is n*log(n)
messages where n is the number of nodes in the network.

71 Thus, any BFT based consensus, while assuming that a communication could be malicious
at any given time, is also assuming some large percentage of its participants is honest.

72 First of all, the assumption that the majority of participants in a social construct are
honest, does not necessarily mean that they are right. A lot of times it is a minority

14

that is both honest and correct. The more complicated the subject of a decision to be
made is, the more chances there will be groups with different opinions. Therefore, the
network Validators consensus should remain in a very simple and limited capacity, and
mostly related to technical aspects of network operations. Validators’ own stakes should
be subject to slashing by non-validators’ stakes (for more on that see DePools).

73 Second, why is this assumption made at all? What exactly stimulates the majority of
network nodes to be honest in the first place? There must be some motivation of network
participants to behave one way or another. This motivation lies outside of any particular
protocol and relates to the economics of that protocol.

74 In the Proof-of-Stake network the validator’s motivation to approve correct blocks is secured
by their fear of losing their stake if they do not. There is no sound ground to believe that
a particular percentage of validators should be honest, and why, apart from game theory
arguments.

75 “Note that there have been some recent attempts to develop consensus algorithms based
on traditional Byzantine fault tolerance theory[13]; however, all such approaches are based
on an M-of-N security model, and the concept of “Byzantine fault tolerance” by itself still
leaves open the question of which set the N should be sampled from. In most cases, the
set used is stakeholders, so we will treat such neo-BFT paradigms as simply being clever
subcategories of “proof of stake”.”[14]

76 Therefore, the whole point of viewing BFT consensus having, say, 66% of honest nodes as
theoretically secure is misleading at best. And game theory arguments are weak, because
they can not prove anything outside of a closed system and to view a blockchain as a closed
game system is naive.

77 Let us assume that there are two coins and a market for them with derivatives and margin
trading (of course there are many such markets in existence). It is quite easy to prove that
holding a large stake in one network and being able to short another may provide a better
incentive which will destroy the security motivation of the latter network validators. Large
stake holder may short the other network token using his long position as collateral with
margin and pay say half of the premium to any validators who will prove to destroy the
second network value. It will be enough to have 33% of the stakes of the second network
to stop it completely and destroy its token value. Having a large number of network
participants helps only in the sense of communication and coordination hurdle such attacks
could carry, but as recent examples of coordinate stock market pumps shows[15]— this is
by far not a security guarantee.

78 The problem multiplies when the network is partitioned. If there is a subset of validators
which could corrupt a thread, it will, by proxy, reflect on the security of the whole network.

79 As a general rule if a simple majority of token holders wants the network to continue —
nobody should be able to prevent that. It is not currently so in any proof-of-stake networks.

80 In a BFT consensus algorithm, network participants agree upon a block. In the case of
a single chain of blocks (no sharding, no threading) this block agreement is final, unless
a fisherman detects a problem in it and blames validators for dishonesty. Remember

15

that fishermen are not a part of the consensus. In fact we can say that fisherman is a
representative of all other network participants who are not part of the validator consensus,
but who want to secure the network.

81 A fisherman is someone who is motivated to secure the network by a potential reward. Fish-
ermen do not need to be a token holder. Of course fishermen can not guarantee anything
because there is no guarantee that fishermen will do anything. There are many more prob-
lems with fishermen we discuss in ”Practical Byzantine Dynamic Slashing (PBDS)”[16].
For the purpose of this discussion what is interesting is that the security of the network
relies on a party which does not participate in its ”consensus”.

82 The notion of Time is critical. It is safe to assume that a block approved and included in
the chain even by a single node 10 years ago would most probably be correct, or not, but
if nobody cares why it is important? Therefore, the block validity is a function not only
of a number of consensus participants but of time. There is simply a threshold function
of time/consensus participants that other network participants are ready to accept as an
agreement on block finality.

83 This is similar to Bitcoin transaction subjective finality, where a participant will wait for
some number of blocks to be mined on top of the block in question for it to ensure its
validity (since each mined block increases the hash power spent, it may be prohibitively
expensive to reverse the transactions after a certain number of blocks (usually 6))3.

84 What is the problem with such an approach? The finality time. We need to wait 6
Bitcoin blocks (about an hour) or 32 Solana slots (about 13 sec.) for a transaction to be
probabilistically secured.

85 The BFT finality is faster since it takes about 5 sec. to agree on a block by 66% of 100
nodes. But is 100 nodes enough to be considered a decentralized network and is even 5
sec. acceptable?

86 Theoretically we would like to have a consensus protocol that can produce blocks as fast
as 500 ms. and have a sub-second finality, with the security guarantees provided by a large
set of nodes, say north of 10,000 assuming just 51% are honest. Is that even possible?

87 Remember that practically speaking most of the time most of the validators are honest.
Indeed it is hard to imagine a network which would constantly pay fishermen success fees.
Such a network would halt after several blocks. Occasionally there are bad actors which
believe they would defy the protocol and try to corrupt it. But all current protocols all of
the time are optimised for the event that is extremely rare.

88 Let’s make a protocol that would come to a consensus using the Soft Majority Voting
mechanism with some modifications. Remember that in soft majority voting the consensus
is reached after some small number of positive Votes, say 20%, while no single negative vote
is received. If at least one negative vote is received, the consensus threshold is increased
until the point where the majority threshold is set (51% for simple majority).

3In a proof-of-stake, this idea is used, for example, by Solana Tower BFT:
https://docs.solana.com/implemented-proposals/tower-bft

16

https://docs.solana.com/implemented-proposals/tower-bft

89 Of course this will lead to the following problems:

1. If a collator collides with just 20% of the nodes, it will not transmit blocks to other
validators of the set, quickly approve the block and send it to masterchain without
even a single node being able to send a Reject.

2. The same malicious set can create a message from thin air and write it into that
rogue block. The message will be viewed as valid by another shard that will execute
it within another smart contract of that shard.

3. Because Everscale is very fast, all those operations will happen in a few seconds time
frame (masterblock validation 4 sec, shard block creation 3 sec) and that time won’t
be enough to stop the attack.

4. In a paradigm of distributed programming, when the smart contract is an object
which interacts with other objects asynchronously the chain of interactions between
those objects could be very long. Since it is impossible to predict what messages
smart contracts will emit before executing them it will be very hard to correct any
corruption in a block in the middle of such a transaction chain.

5. Once executed, such a transaction could allow attackers to exit with large sums of
money using decentralized exchanges and bridges with other networks which could
render all the staking security guarantees useless.

6. In which event the fishermen will be too late for the party. The fork of a blockchain
(whether in a form of vertical block or just fork) will recover a very insignificant
portion of the attacker’s reward. The blockchain will suffer catastrophic perception
damage.

90 Let’s emphasize that the idea that we could correct such an action retrospectively is false.
Forks, vertical blocks or any other such mechanism won’t be able to mitigate such a catas-
trophic event. Therefore the whole security assumption relying on fishermen is wrong.

91 Let’s also emphasize that guaranteeing a security of a native token in a shard does not pro-
vide enough security guarantees as it should also guarantee the smart contract execution
correctness on that shard, facing catastrophic consequences if not.

Let us present a Soft Majority Fault Tolerance protocol (or SMFT for short):4

4SMFT was developed by Mitja Goroshevsky and Pavel Prigolovko with assistance and help from Kirill
Zavorovsky, Dmitry Shtukeberg, Leonid Kholodov (all — TON Labs) and Andrey Lyashin (Pruvendo).
The full description of the protocol, detailed proofs and math model is published separately.

17

92 Will leave the Catchain BFT protocol intact as of the leadership selection and consensus
phases. The Thread validators will validate the block as they are now, just with the BFT
threshold lowered to say 51% signatures, which will be used for preventing natural forking
and slashing in case of an attack 5.

93 In addition, let’s have a protocol that samples some random nodes out of the WorkChain
Validator set and requires them to validate every block (let’s call them “Verifiers”). The
randomness must be calculated after the block candidate has been propagated. The pro-
tocol must be non-interactive, succinct and low latency.

94 Let us concentrate on the block collation phase, before the consensus, because in order for
malicious validators to validate the malicious block it should be collated in the first place.
If we prove that the malicious collation will be impractical, it won’t matter how many
potentially malicious validators the thread has.

95 Instead of broadcasting the block that has been already validated, we will ask collator to
broadcast the block candidate to all nodes in the WorkChain. If a collator won’t do this,
the block header won’t be included into Masterchain and the Collator will be slashed for
data withholding.

96 Before we describe how blocks are verified let’s prove that the block has indeed been
broadcast. Without such proof the malicious set of actors could siphon the block only to
themselves, “mining” the necessary outcome.

97 Let some validators be defined as Broadcast Protectors (BPs for short).
98 When receiving a new block broadcast from the collator, the validators calculate a set of

BPs from a hash of the block and list of validators. Say, taking the Workchain Validator
Set divided by some number.

99 Validators will send a Block Receipt — a block hash signed by a BLS signature to all
BPs. When a BP collects 51% of Receipts it will broadcast a multiplied Receipts and a
numbered list of validators it got receipts from. The Validators that are not sending Block
Receipts over some period of time or within a particular delay must be slashed.

100 The MC will verify the broadcast proof message by decrypting the block hash using mul-
tiplication of pubkeys of validators which provided receipts and comparing it with the
collator’s block hash[17]. Passing the check for 51% of validators will finalize the block
if no NACK messages have been received so far. Assuming there are 200 neighbors and
that there are less than 50% of malicious validators, getting 50%+1 receipt guarantees that
there is 2200 probability for broadcast not to happen.

101 Now that we proved 51% of validators got the block, let’s choose a set of verifiers.
102 In order to do this let’s choose a random number and a secret that only the verifier knows.

Let’s then calculate if the validator is a verifier based on those two numbers which would
be random and could not be calculated by an outsider.

103 When receiving the block candidate broadcast, the WorkChain validators will calculate
Ω from a thread ID, block candidate sequence number and hash of a masterchain block

5In theory we can throw away the BFT protocol altogether, but further research is needed

18

signed by a verifier private key. Calculate Hv = hash (Ω). Let N be a number of validators
in WorkChain, R is a predefined parameter in a workchain’s config. Then T is a multi-
threading factor equal to [N/R]. If a remainder of Hv/T division = 0 then the Validator is
a Verifier for a thread block.

104 If the Validator is a Verifier it will verify the block immediately and send the result (ACK
or NACK) to all Masterchain Validators and to a certain number of validators in all other
Workchains together with the hash of the block candidate and the proof of correct Verifier
selection.

105 If a Verifier will not submit either Nack or Ack it should be slashed. In order to accommo-
date that we could imagine a protocol that would reveal the true verifiers after the block
has been finalized. Several such schemes could be imagined where the Verifier will have to
calculate its participation from some key that must be revealed in another context. Since
all ACKS and NACKS are included in the masterchain block it is available publicly. The
Broadcast protection receipt can include a validator signature that would reveal the key
from which the Verifier has been calculated.

106 Now Masterchain validators will need to wait for a thread block signed by 51% of that
thread consensus and broadcast proof from at least one of Broadcast Protectors. If no
NACK has been received for a certain period of time (which in reality is the broadcast proof
creation time), the block header will be included into the Masterchain. If at least 1 NACK
message has been received, the Masterchain will issue a special verification procedure.

107 Since in every round the probability of any particular validator to become a verifier is 1/T,
the probabilities for each verifier are discrete.

108 Malicious validators (M) attack could only be successful if the majority of thread validators
are dishonest, none of the honest validators are chosen as Verifier and their message delivery
fails. Disregarding the network failure rate the probability of this event was compared with
failure of Bitcoin “6 block finality”

109 Let’s compare this with a probability of similar attack on Bitcoin for C =4, R = 15, N =
900

19

110 We have proved that by having a mechanism of block verification by a random validator
set from a global set we can decrease the threshold of the consensus validation in the
thread (effectively to zero), reducing the amount of time necessary for block finality while
simultaneously greatly improving the thread security. Applying the correct economics to
that model we have also proved that it will be completely impractical to corrupt any block
data.

111 We can also prove that by reducing the BFT assumptions in the thread we mitigate most
attacks on that consensus. In BFT consensus if the thread validators could not come
to the consensus regarding the block, i.e. more than 1/3 of its validators are malicious,
they could be easily slashed and excluded from the thread validator set by masterchain
validators based on the verifiers’ attestations of the collate candidate. Moreover we could
extend the use of that mechanism to the Masterchain blocks as well and therefore ensure
that even the masterchain could not be attacked by a 1/3 of malicious validators. In fact,
the only thing BFT is good at is fast coordination of an execution, providing necessary
redundancy.

112 By proving that only one node could be enough to Reject a malicious block to stop the at-
tack we demonstrate great improvement in security assumptions of proof-of-stake networks
making it a more secure network than a proof-of-work.

113 Question remains, could we make it even more radical and provide a zero probability
network security guarantee? What if we add a full node capability of producing Nack
messages as in Dynamic Fisherman with one critical difference. In fisherman the proof of
a block corruption is supplied post factum, rendering the whole idea practically useless, as

20

we discussed above. Adding the ability of a full node to deliver a Nack message within the
block producing delay changes everything. Now we only need to prevent DDOS attacks
on both the full node itself or by a full node. In order to do this we can imagine a simple
commit reveal scheme with a deposit bond. The full node which wishes to check blocks
for validity (lets call it a Watchdog) will create a contract in the Masterchain using some
private key and post a bond there. Once a malicious block candidate is detected, such
Watchdog will send a Nack message and a bond contract address, signed with the private
key of a bond contract holder. Now if proved wrong Masterchain validators would know
who to slash and nobody would not know who are the holders of the bond contracts before
the Nack is actually received.

114 Such a mechanism would not be incentified and the fisherman-type incentives are useless
because there would be no corrupted blocks detected ever, since the attack will have prac-
tically 0 chance of succeeding, as we demonstrated in this chapter. Yet since there are
many parties which hold a lot of tokens, altruistic behaviour is expected in this case as it
will guarantee the security of their tokens to be virtually 100%.

Masterchain Slashing and Recovery Protocol

(MSRP)

115 Let’s now consider MasterChain security. In Everscale EK 1.0 there are up to 100 nodes
in the Masterchain. BFT consensus protocol with 66% of validators does not have enough
security guarantee for a whole network to rely upon. For example if the network value is
10 bln and say 25% of all monetary supply is validating the network security guarantee is
roughly 300-400 mln. that can be easily distributed between very few powerful entities.
There is a big difference between a network secured by all its tokens, let alone its hashing
power, and a network secured by a couple of entities. Fishermen won’t help us here (yet
again). If the Elector contract is running on the Masterchain the collusion of Masterchain
nodes won’t be prevented by submitting blames into a contract those same validators run.

116 They will simply ignore it, change the contract and do whatever they want if that is what
they are up to. There is a possible argument about social consensus and forks, etc, but we
need to compare this network security with at least a Bitcoin which does not need to do any
of these assumptions. By partitioning the network we are weakening its decentralization
properties, now we need to correct this. As previously shown with the SMFT consensus
protocol, we have increased the security of threads significantly.
Therefore a protocol must be created that ensures — if any of the nodes in
the network provides a proof of a materchain block invalidity the action can
be taken by a simple majority of all validator nodes in the network regardless
of exactly which Workchain they are currently validating. Let’s make several
assumptions:

21

• at least 51% of validators’ stakes in the network are honest

• all nodes in the network must receive all Masterchain blocks

• validators representing 51% of stakes can ban any validator from the network regard-
less of what chain the other 49% are currently validating

117 Once 51% of validator stakes realise the majority of Masterchain validators are Byzantine
they need to send a blame with proof to smart contracts which are not controlled by a
Masterchain. This kind of assumption dictates a very different Elector contract design.
Such an Elector contract should be distributed; its addresses reside in the chains where
validators owning them reside. The distributed consensus should be formed between these
smart contracts. Without such a consensus no Workchain or Masterchain could function.
In our example, if a Masterchain Elector contract can not form a consensus with other
Workchain Elector contracts, they will simply elect new Masterchain nodes and continue
without the rogue validators.

Distributed Dynamic Validator Set (DDVS)

118 In order to implement MSRP protocol the Election process of the Everscale network must
be organised in the following way:

119 The Election mechanism should be replaced by a DDVS, which is a constantly running
Election consensus mechanism with no epochs or elections. Elections in general are bad by
design. Apart from putting stress on the network by creating unnecessary heavy iterations
over a single ledger. It also makes it difficult to implement dynamic slashing mechanisms
and despite the fact that it has been implemented already, we believe a distributed smart
contracts implementation of the validator set is essential. Additionally, such a dynamic
validator set is needed to allow MSRP.

120 This works as follows: anyone wishing to become a Validator will deploy a DePool Root
Contract at any Workchain they want except for the Masterchain. The contract will have
several methods, such as, “accept stake”, ”stake lock”, ”slash” etc.

121 DePools are a liquid stacking protocol invented in Everscale; it preceded any liquid stacking
solutions that later appeared on other networks. Most capital in Everscale is currently
staked through DePools. But the first version of the contract had some limitations by
design. Let’s talk about the new DePool design and about the new Elector contract design.

122 The DePool Root Contract is a Root for DePool Wallet contract. Any user can ask a
DePool Root to deploy them to a DePool Wallet. Once deployed, this user will be able
to deposit their funds into this contract. DePool Wallet can accept the user’s funds and
then users can choose to Stake their funds with any DePool Root Contract deployed by
a specific validator. The user coin never leaves the DePool Wallet, as it will only send
a message to the DePool Root Contract that the user has chosen with a confirmation to

22

the stake; if DePool Root accepts the stake it will respond with ”Lock” instruction. The
Lock period is a discrete constant for each DePool contract. It also includes the set unlock
period for each stake to leave the network.

123 Now we have a lot of tokens locked in user DePool Wallets and some DePool Root Contracts
which accepted some of the DePool Wallet stake requests and locked their tokens. We need
some distributed mechanism to change the Validator Set in the network configs.

124 Let’s have a copy of the Distributed Elector & Config Contract (D’Elector & Config) sitting
in every chain the network has. In fact, let D’Elector & Config be required to start any
Everscale chain (whether Masterchain or Workchain). In order to become a validator or
add/withdraw stake, the DePool Root Contract will send a corresponding message to the
D’Elector & Config contract requesting the change. D’Elector will receive such a message,
verify that DePool Root is an authentic contract (see Distributed Programming for more
details on how that’s done), execute config parameter change and send a corresponding
message with the new config to all other D’Elector & Config contracts on the network.

125 Other contracts will vote for a proposed change with the stakes they register. If the
proposed change receives more than 50% support, the nodes will execute the configuration
change.

Improved Finality

126 In practice, the collated block that has been broadcast and that is correct can be considered
final because the collator and the validator of the thread will have too much to lose. And
since the block broadcast to all full nodes in the network, any party that would run a full
node and collect a block from collator while himself an honest participant could himself
validate that block and consider it final, simply because the fact that their full node has
received the block proves that the block indeed has been broadcast.

127 It will be a little harder for a light client to verify that the full node owner did not collude
with a collator, it should either wait for a masterblock or collect some number of verifiers
ACKs.

REMP — Reliable External Messaging Protocol

128 REMP’s objectives are to guarantee delivery of external messages to a smart contract in
one WorkChain from any network participant in a particular order and only once. It is
hard to overstate the importance of achieving these objectives.

129 In EK 1.0 design a full node transmits messages via overlay groups to the validators which
then try to apply these messages to a block without any guarantee of delivery. It has five
main flaws: the message is delivered slowly, the delivery is not guaranteed, unnecessary
traffic is created, the order of messages in the block is arbitrary and messages could be

23

replayed.
130 The acceptable time of message execution should be measured in milliseconds. If a high

frequency of messages are sent the replay is a real issue. Done on the contract level, it
complicates code, costs fees and is generally unreliable.

131 REMP is a protocol that guarantees real-time reliable delivery and execution of messages
with built-in replay protection.

132 Definition: A Network Participant (NP) is any node that has all communication pro-
tocols and software needed to access and parse block data, resolve ADNL address of all
current and future validators in a shardset, send a p2p message to a Collator and receive
an Accept (AR) or Error Receipt (ER) from it.

133 Message transmission to thread validators: Network Participant should broadcast
external message to the current and next validator set of a thread depending on destination
contract address.

134 In order to do so NP should:

1. Calculate an ADNL address for all current and next thread validators (from the latest
masterblock available to the NP and max parameter).

2. Send a unicast message to REMP participants, which are calculated as current and
future thread validators.

3. Validators should immediately write the corresponding status of that message into
”Message Queue Catchain” (MQC) with a timestamp as a 64-bit time t integers.

4. Only the collator will send a signed Confirmation to the NP, once it has successfully
collated the block. Collators will write the confirmation to the MCQ as well. If
there are more than one collator all of them will send such a message. If the block
timestamp collated by a Collator is later than the confirmation, the message must be
inside that block. If the message has not been included into the Block by the collator
which signed the message, the NP can send such message with validator signature
into a special smart contract which will slash all validators of a particular thread.

5. Validators will slash the Collator if: it did not include all messages it confirmed (soft
slashing), it has included the same message twice (hard slashing).

6. If the block was not collated and another collator has produced it the order of the
messages should be as following: all internal messages that were received by the time
of the unsuccessful block collation, all external messages received by the time of the
block collation, all new internal messages, all new external messages6.

6In practice this guarantee is harder to implement than it seems for the asynchronous nature of Everscale.
Some changes will need to be implemented in the internal messages structures and block formatting. Yet
even without this guarantee the REMP will achieve all of its objectives. It is important to understand that
this optimization is affecting block optimistic finality time from say 2-3 sec. to 200-300 ms. In the best
case scenario. Bottom line it is nice to have rather than must have optimization.

24

135 The order of the messages within a block time slot is not very important; what is important
is reliability of message collation in case they were received, the order of messages between
internal and external of the current and next block.

136 The next set of validators will naturally create a new MQC which will include Next valida-
tors of the current thread. Same thing will happen with Split/Merge. Once the new MQC
is created the Validators should look at the last masterchain block before the set changed,
look at the last shard block that has been written there and compare the untreated external
messages in their MQC.

137 They will move untreated messages in the old MQC into the new MQC once they become
validators of that thread.

138 If a thread is split, both queues should split as well. If it merges with another thread,
queues should merge as well.

139 If the same message arrives more than once it should be discarded by both validator sets
on arrival and not inserted into any queue, thus ensuring replay protection. Collator can
not collate two external messages which are the same.

140 Collators should try to apply all external messages to a thread block immediately. At least
30% of the block should be allocated to external messages. There could be more included
if the block has empty space or less if there are not enough external messages in the queue.

141 There are some exceptions to the REMP messages guarantee, for example the ‘now’ ESVM
instruction. Since it’s dealing with the current real time, the execution of such an instruc-
tion could not be guaranteed over some time period, therefore if a REMP message contains
such instruction execution the REMP will not be guaranteed (such message sender will have
to wait for block finality in the thread and potentially even masterchain.
DDOS protection

142 If an NP is sending too many messages that are not accepted, the shard validators will ban
such NP for a particular period of time (cooling), they should not try to execute messages
from said NP for a period of a ban, yet they should write a message about their decision to
ban NP into MQC together with time duration of the ban. They should notify NP about
the ban by sending a special Error message to the first 100 messages received from such
NP. The Error messages should include the Ban code and time of its expiration.

25

Chapter three. Ever Operating System

An operating system (OS) is system software
that manages computer hardware, software
resources, and provides common services for
computer programs.

— from Wikipedia

About Ever OS

143 Ever Operating System is an intermediary between a user and a blockchain — a distributed
verifiable computing engine.

144 A modern blockchain like Everscale is not just an immutable ledger. Bitcoin and other
earlier blockchains were mostly ledgers, yet even Bitcoin supports a non-Turing complete
script that provides some transaction execution instructions.

145 Most blockchains after Ethereum are, in large part, distributed computing engines that
execute and verify Turing-complete programs called smart contracts. In simpler words they
are a special breed of network processors working in orchestration (called ”consensus”) to
perform common operations and in that way verify the correctness of their execution.

146 In Everscale this paradigm is taken to the extreme. The immutable ledger is quite a small
part of Everscale. Of course it is an immutable ledger and a chain of blocks — that is how
the data is written and transmitted from one network processor to another — yet there
are at least two aspects which make Everscale uniquely more so a computing engine than
a simple ledger.

147 Almost everything in Everscale is smart contracts. Every account in Everscale must be
associated with a smart contract code (or initialized) in order for a user to be able to
perform any operation with it. Smart contracts are Everscale Assembly programs executed
in the Everscale Virtual machine much like any assembly code is executed by hardware or
by a virtual processor in a regular computer.

148 Between a regular computer and a user (which may be a developer who would like to write
programs for that computer or a regular user who would like to execute and interact with
these programs) there is something called an operating system.

149 That is how GNU defines an operating system: Linux is an operating system: a series of
programs that let you interact with your computer and run other programs[18].

26

150 An operating system consists of various fundamental programs which are needed by your
computer so that it can communicate and receive instructions from users; read and write
data to hard disks, tapes, and printers; control the use of memory; and run other software.

151 It is quite obvious why computers need an operating system. Before operating systems
existed, interaction with computers looked horribly unpleasant to the end user. Something
resembling today’s interaction between a user and a blockchain.

152 Any way you look at it, blockchain is quite a good candidate to be called a decentralized
computer. At least some of the blockchains are. Everscale most definitely is.

153 And just as with any computer, a blockchain needs an intermediate layer (or layers) that
manages its resources and provides services to the programs the user runs or interacts with.
Of course blockchain, in terms of architecture, cannot perhaps be compared directly 1:1
with a regular PC. But in logical terms, whenever we think about a software stack needed
to enable interaction with a user — to call it an operating system is quite compelling.

154 Let’s run some arguments. For reasons of practicality we will not talk only about the
Everscale blockchain, but most of the arguments could be applied to some other modern
blockchains as well.

155 A classical operating system is expected to provide: Memory Management, Processor
Managing, Device Managing, File handling, Security Handling and so on. In this chapter
we will discuss how all that is implemented on the blockchain for the first time.

File System

156 In Ever Kernel the address of a smart contract is calculated by hashing its code and
initial data. The full address, consisting of a 32-bit WorkChain id, and the 256-bit internal
address or account identifier account id inside the chosen WorkChain. In operating system
terms it provides address space management functionality.

157 In the context of the Ever Operating System though, The Merkle tree of Ever Kernel
1.0 provides just part of the necessary functionality to build a fully distributed file system.
Therefore we are adding two additional search trees in which nodes would represent contract
code hash and contract data and leafs would be contract addresses. We are optimising
for fast lookup for contracts with similar data or code hash from within the Node and
adding subsequent instructions to ESVM to allow this lookup from within smart contracts.
Additionally, we add code versioning within these trees thus allowing following the evolution
of a smart contract code after setCode operations.

158 This functionality will be particularly useful in the Distributed Programming Paradigm
(see below).

27

File names and directories

159 The Ever OS user should be able not only to call a program by internal processor address7,
but to use human readable names, store data not only in the contract internal memory
but have access to some peripheral devices such as hard drives, long term storage and so
on that would represent a natural functionality of an operating system kernel.

160 File names and directories have been implemented by a protocol we call DeCert (Decen-
tralized Certificates) in general and in particular DeNS (Decentralized Name Service).

161 The implementation of DeNS is an example of the Distributed Programming Paradigm
of Everscale (see a special chapter below for more information) which provides an instant
name resolution.

Tonix

162 Following the above a practical simulation of a UNIX filesystem has been implemented8.
Tonix provides basic file system functionality, as well as an interactive shell with a Unix-
style command line interface. The following categories of operations are supported: query
file system status, manage user session, manipulate files, change file attributes, process
text, access reference manuals etc[19].

Storage and other Peripheral Workchains

163 Apart from dynamic memory, which is supported in the form of hashmaps and key-value
databases, which Everscale as a whole in fact is, there should be a Permanent Storage for
large amounts of raw data. This storage should be accessible by an external user as well as
by smart contracts running on EK. It should support common file-system data operations
(such as read and write) as well as metadata operations (such as create file and lookup).

164 There are many known problem of distributed storage architectures: as per CAP Theorem,
we either store the data on every node of our consensus therefore ensuring availability
and partition tolerance (the system continues to operate despite an arbitrary number of
messages being dropped (or delayed) or we start to optimise for consistency (every read
receives the most recent write or an error) thus trying to reduce the number of nodes
holding the stored data, reducing therefore partition tolerance and availability as with
smaller amount of nodes there is much larger chance for them being off line or corrupted.

7“consists of a workchain id (a signed 32-bit big-endian integer defining a workchain), followed by a
(usually) 256-bit internal address or account identifier account id (which may also be interpreted as an
unsigned big-endian integer)” — Telegram Open Network Blockchain, Nikolai Durov

8Tonix — UNIX filesystem simulation on Everscale — Boris Ivanovsky, TON Labs

28

165 Economically the cost to store a file on a hard drive is constantly decreasing. The most cost
validators pay today is for the internet traffic. Therefore it is the partitioning tolerance
that costs the most. The more validators relocate the data — the more it costs.

166 Ultimately the cheapest way to store a file would be to contract a particular validator and
store it on their hard drive once. Of course this will be at the same time the least secure
option.

167 The problem is, when we talk about decentralized storage we are not just talking about
some consensus over a stored data ensuring censorship resistance and safety. We also need
to be sure the data is actually being transmitted to its consumer whenever requested.

168 A protocol is needed to ensure that the data is stored continuously for an
agreed upon period of time, that this data is protected from attacks on its
integrity, that it is private, that it is censorship resistance, that it is verifiably
retrievable and that the incentives of network participants aligned with their
goals of storing and retrieving the data.

169 Let’s imagine a Workchain where shards are not rotating (or rotating very slowly to avoid
collusion of validators using a limited number of storage devices), i.e. having the same
set of validators more or less. This Workchain would be optimised for storage. Let’s call
it a ”DriveChain” (will discuss other types of storage such as ”IceChain” for cold storage
later).

170 DriveChain will execute a Everscale Virtual Machine with some additional set of instruc-
tions related to storage. Such instructions will be: Write Init, Write Receipt, Read
and Delete.

171 The Nodes which would like to join DriveChain as Validators will state their capabilities
in terms of disk space they would contribute to the network. The D’Elector contract of the
DriveChain will ”mount” the Validator into a particular shard (in which case the shard
would be more appropriate to call ”a Drive” or “DeDrive). If a validator has fallen out of
sync, it must signal this to the DriveChain D’Elector contract. If more than 10% of the
validators are out of sync, the D’Elector should start adding validators to the DeDrive.

172 In order to make sure that the validators are committing the disk space, files consisting of
pseudo random bits would be written into the disk space to fill all the committed space.
Once the real file arrives for a particular account to be stored, the file would be created
which will replace random files.

173 As usual the DeDrive validators will produce blocks periodically. The blocks would be
added to the global DriveChain state exactly like they are in any other Workchain following
the multithreaded approach. Therefore the blockchain data associated with DriveChain
will be the same across all the DeDrive Validators, only the Storage data, which is located
on DeDrive Validators hard drives, will be sharded.

174 The File is written into the validator’s hard drives by chunks of some length defined in
the DriveChain config. Validators will construct an Extended Merkle Grid[20] of all the
chunks of a File with SHA-2 hashes of the chunks for the DeDrive Storage and update the
root hash in the DeDrive index smart contract (think of it as a directory index).

29

175 In each DeDrive block the collator will reveal a File chunk corresponding to a sequence
number of a chunk calculated from a pseudo random hash (RND) of the DeDrive Root,
hash of the last masterchain block and a sequence number of a collated block (Rnd mod
X, where X is the number of validators in the DeDrive). The validators will validate on
their own data (running a checksum verification on the file beforehand) that such a hash
of a chunk corresponds to the hash of their chunk and sign the block. This information,
including the chunk itself will be written into a MasterChain block. They will Reject the
block if data is not corresponding.

176 Every masterchain block, a random set of Verifiers on all Everscale Workchain will per-
form a sampling by requesting a chunk corresponding to the data committed to different
DriveChain blocks written into the Masterchain block corresponding to a sequence number
of a chunk calculated from a signed by that validators private key hash of a masterchain
block (RND mod X, where X is the number of validators in the DeDrive)

177 If the data does not exist or does not match, the validator will be asked to provide additional
proofs of different data chunks by a global set of Verifiers.

178 The sampling will be initiated by the same set of Verifiers used in a SMFT Consensus
Protocol. Several Verifiers from each Workchain are chosen to perform the sampling. If
the chunk is not available or is corrupted and the validator is not in the D’Elector list
of ”out of sync” validators, the Verifiers will produce a Blame and if the total amount
of Blames reaching 3 additional verification will be initiated by the selected Validators
Committee. The blame must include the wrong block provided by the validator as well
as all other blocks received by the slasher from the DeDrive. All Verifiers will request the
corrupted or unavailable chunk as well as an additional chunk corresponding to the last
hash of the MasterChain block and the verifier pubkey.

179 The 66% of votes of the Validators Committee will decide on the data availability. If the
DeDrive validator has failed to produce chunks for less than 10% of requested chunks it will
be slashed by 50% of his stake, if more than 10% is detected the 100% of the validator’s
stake will be slashed.

180 The slashing amount will go to the Verifiers who detected the slashing conditions in case
the Validators Committee acknowledges the failure. If the Validators Committee rejects
the failure those Verifiers will lose their stake.

181 Remember that all validators within the DeDrive will store all the data associated with
Accounts of that DeDrive. The only difference with a regular thread would be that instead
of storing everything in a database, calling storage instructions of the ESVM will result in
a file being written or read from the disk on that Validator machine.

182 The file that is written into DriveChain has exactly one File index smart contract. When
a File is stored on a Validator machine’s hard drive, the name of the resulting file will
exactly match the File index Address.

183 In order to give a file a human-readable name, the DriveChain DeNS contract should be
used which will point into a File index smart contract.

30

184 When a consumer wants to write data it will need to deploy a File index smart contract on
the DriveChain. On deploy the smart contract will call the ”Write” instruction with the
hash of the file the user wants to commit. In return, ESVM (Collator) sends a FileCon-
nector. The User obtains the Connector from the smart contract once deployed and sends
a file. The Collator receives the file, and invokes the smart contract with Write Receipt
instruction.

File index smart contract

185 Below is an example of how to upload a file into a DriveChain.
186 Let’s take a hash of the file and add a contract code to calculate the address. Deploy a

File index smart contract with the size and a hash of the file and call its constructor (with
the ESVM command WriteInit). The contract generates a special action, WriteInit, which
stores the FileConnector. FileConnector contains the collator’s ADNL address, expiration
time and owner PubKey (to check connection initiator). Once a File index is deployed,
the user can send a file to the ADNL address indicated by the FileConnector within an
expiration time provided, signed by a PubKey of the File index.

187 DriveChain ESVM instructions could be called from a smart contract by internal messages.
The message is sent to the contract in the DriveChain. It will pay for the execution of a
storage operation instruction which includes the storage fees for that file.

188 Pubkey is necessary to validate the upload client to get rid of spammers who can use the
upload credentials. To initiate an upload, the owner should send a message signed with his
private key. Collator checks the signature with the pubkey and starts uploading.

189 To share the data, the owner would need to give corresponding permissions by changing
the File index accordingly. In operating systems the file usually has permissions applying
to that user. When a user logs into an operating system it checks the permissions this
user has on that file. In the case of Ever OS such permissions would be added to the File
Index in the form of an address or a PubKey or a DeCert certificate. The Validators won’t
transmit the file to an unauthorized party and if they do the Relayer would stop such
transmission and slash the shard validator. Of course the validator could just give direct
access to that file to some third party, but in that case this would be equivalent to stealing
a physical storage device from somebody. Apart from the encryption there is no way to
defend against such an attack.

How the rest of the DeDrive validators get the file

190 A collator creates a special CreateFile transaction in the file smart contract and attaches
the hash of the uploaded file. The contract will count 66% of all validator transactions to
validate the file states as available and issue a WriteReceipt transaction. Now everyone
knows the file is available. The rest of the validators must download a file in order not to

31

be slashed when verified.

How to Read the File

191 The Read Instruction will return the hash of the offset the user requested. From this offset
the calculation can be made using all validators PubKeys to determine which validators
should relay the file to the user. The user will run the same calculation using a validator
public key to determine where to connect to get the file. It will open simultaneous con-
nections to all Relayers and send them a signed message with a request for the file. The
Relayers will connect with the DeDrive Validators, and send them the user-signed message
to receive the file. The Validators will check that the Relayers are chosen relayers, that the
message is signed by a user which has permission to read the file and transmit the data.

192 In order to read the data a user will post some Bond into a smart contract. The user gets
the Bond back if it sends the proof that the file has been transmitted to him minus the
Read cost. A Relayer will receive 66% of the read reward (the rest goes to the DeDrive
Validator) if the data has been transmitted, which the Relayer can easily verify by taking
a hash of a chunk which has been relayed and checking if it belongs to the Merkle tree
of a storage since the file root hash is stored in its index. If the Data isn’t available the
Relayer will send a Blame. If there are 66% of blames for that data received the DeDrive
Validators will be slashed for not transmitting. If the user gets the file, it sends the proof
that would release its bond.

193 The Relayers reward for a Blame is much less than its reward for successful transmission,
but they only get it if the user has sent a proof of the file transmit. Now it seems there is
nobody in the system who is incentified not to store, transmit or lie about the data.

194 One of the first consumers of the DriveChain would be other Workchains which would
archive an old state. The D’Elector smart contract will once in a while create a request
to store some passed state archives and randomly choose validators who will commit its
archives to the DriveChain. The validators who do not successfully upload files will be
penalised. The storage costs of the Archives will be paid out from the Validator Giver
account. The cost will be offset by reading fees for the archives.

195 The consumer could store any data in the encrypted format. No validator would have the
ability to decrypt the data and read it. Relayers will get chunks of data to transmit to the
consumer making it de-facto a torrent-like network. There could be a garlic-like protocol
implemented on top of Relayers easily as their addresses are ADNL addresses.

196 In order to give permission to modify or read the file, such permission should be written
into the DeFile index smart contract.

32

IceChain

197 There could be a slower Workchain that would store long term archives, let’s call it an
IceChain. Such an IceChain would operate exactly like the DriveChain with some modifi-
cations. Since the DriveChain is a Virtual Drive blockchain and the data should be readily
available in the current state of the art, the use of Zero Knowledge Proofs (ZKP) may not
be practical. Yet in the IceChain where validators can store the files in a long-term Glacier
type of Storage (such as Tapes etc.) the access time does not play such a role as the user
is expecting to get the file with potentially significant delays. This opens a possibility to
use non-interactive ZKPs with no trusted setup for data sampling.

198 The sampling would include constructing a ZKP for a different random number of chunks
for each verification whose delay could be set to minutes. That would render the possibility
of data corruption in the IceChain to virtually zero. The proofs would be verified by
Everscale Verifiers periodically and would contain everything required to blame if the data
is not available or corrupted. When the ZKP reached the state of technology that would
enable them to produce the proofs at the high rate, they could replace the verification
mechanism on the DriveChain as well.

33

Chapter four. Web Free

199 Decentralization claim can only be made when the whole system is decentralized and,
therefore, should be judged by its “weakest”, read “most centralized” link. For instance,
there is simply no point in creating a maximum decentralization on a consensus layer and
then passing all transactions through one server.

200 Ever OS is built around the concept of the End-to-End Decentralization Framework (E2ED
for short) which also goes by the name “Web Free” as opposed to “Web 3”.

201 The reason we disagree with Web 3 is more or less the same as we disagree with the multi-
layer approach. What is correct for the critique of a multi-layers blockchains is even more
so for a specific Layer such as Web 3. To add the current Web into a blockchain is akin
to adding a rotten apple to the barrel. As we already discussed above the current web
should be displaced by an entirely new technology to be brought back to the user. This
technology we call “Web Free”.

202 Notable Web Free components of Ever OS are: smart contracts and tools for their devel-
opment, testing and security; Distributed Programming Paradigm, DeBots, Pipes, code
handling, compatibility, bootstrapping and upgradability. They will be discussed in this
chapter.

Smart Contract Languages

203 Ever Kernel v1.0 uses the Everscale Virtual Machine for smart contract execution. The
reason to use such a virtual machine mostly relates to the compactness of its code and
supposedly easier security model. For Ever OS design considerations it was very clear
though that in order for such a platform to be adopted by many developers the high level
and familiar programming languages should be adopted to write programs for Everscale
ESVM.

204 The special nature of blockchain immutable programs that may hold very large monetary
value dictates special attention to its security. There are largely two ways to look at
a solution to that problem. One would imply creating new Domain Specific Languages
(DSL) to limit the ability of a programmer to make mistakes. We always believed this way
leads to the oblivion of such a platform. Therefore Ever OS middleware includes compilers
for Solidity and C/C++ languages (using the LLVM framework[21]). In a special note let’s
mention the Ever LLVM compiler team work on advancing the comprehensive stackification
logic within LLVM community[22].

34

205 The security model for writing such programs using general purpose programming lan-
guages is described in the next section, yet there is one tiny note of hypocrisy and one
larger problem of efficiency in this logical construction.

206 The thing is Solidity and even C/C++ we are using to write for ESVM are not exactly
general purpose programming languages. Even a proficient C++ programmer can not
simply write an Ever OS program in C++ without first understanding quite a lot of
limitations that ESVM (or any other such Virtual Machine for that matter) execution
imposes on a language.

207 For example, the inability to write code like this:
int *arr = new int[10];

208 Or the notion of memory which is completely different etc, could probably illustrate the
point. Of course one would claim that a distributed processor architecture probably re-
quires a special model of program execution. After all, the use cases for such programs are
very different from use cases of a local computer or a network server. Yet is it really so?
Can we have a fast compact code execution which would be really easy to develop?

209 Michael Franz has developed several interesting concepts that are worth researching in
terms of its potential applicability to Ever OS. There is a prototype developed in TON
Labs for translating Solidity into Slim Binary. On average, a code of several Kilobytes
is translated to just a few hundred bytes even without index compression and similar
optimizations. Such a code could be executed in a separate isolated environment as part
of the ESVM instruction set or as a non-ESVM code.

Programs security

210 One of the goals of Everscale is to make accessible and easy to use tools to create its
programs. Unfortunately for blockchain programming this is not enough. Distributed
processing demands certain specific properties from a program such as compactness, effi-
ciency and in particular, infallibility. The latter is important since almost every program
in blockchain carries some monetary value, thus it lives in a very different paradigm than,
for instance, a regular program executing on a user machine locally. Sometimes the value
carried by such a program is such that it could be compared with a program operating a
space mission. There has been a long established method to make such programs secure.
This method is called “formal verification”.

211 Though every program is definitely designed and in principle can work on a finite set
of input data and internal state, the variety of resulting space is great enough to forget
about testing (checking) the correctness of a program behaviour on each possible value.
Here the math comes. The mathematical logic and correspondent type systems allow to
“quantify” (apply a quantor before) the term, which gives the possibility to “check” the
program behaviour immediately on every possible input and internal state. We usually
write “forall” quantor as ∀ and mean that if the statement ∀ x, P (x) holds, property (or

35

predicate) P actually holds for every x from some eligible (probably infinite) subset. The
possibility to reason and argue about “forall” quantified properties on a program lies deep
in theory of programming languages and its interpretation on admissible machines (real or
virtual),

212 If everything is so good, why not formally verify every program. Besides a lot of technical
still unsolved tasks, there are two bold arguments: it is always very difficult to perform
and to realize that it is actually done. Sometimes it is also completely impossible.

213 On the first point, Poincare and Hadamard[23] established that all more or less formally
formulated tasks can be divided into direct and indirect (inverse) simply put - correct
and incorrect. Direct task is such where there exists an algorithm to solve it step by step
starting from initial data, having the correct answer or proven failure to solve (e.g. number
addition, or quadratic equation) at the end. The indirect task is usually an inverse task of
finding initial data which corresponds to observed behaviour. Often, humans find a way
to transform the inverse tasks to direct (quadratic equation still works as example), but
more oftenly they fail. Formal verification is the task to find the properties of the given
program and prove them in a formal way. No direct way to solve this has been found.

214 But no less critical as we said earlier is that sometimes the whole task is completely
impossible. As programs are not scientific objects, their properties have to be realizable by
developers and users. Mathematical proof is not of common sense, and even an excellent
programming engineer might not realize all the properties the written program satisfies.
Moreover the set of program properties is almost always infinite and there is no known
general way of reducing that infinite set to a “finite minimal normal form” with an exception
of trivial programs like a list sort. Another example is arithmetics. Widely known that
number theory is not fully developed and may never be. Kurt Gödel broke people’s hopes
on fully closed mathematics by stating his theorem of incompleteness[24]. So if a program
behaviour is based on some number properties which are still unknown (unproven) or very
difficult (Fermat theorem), to prove program behaviour, correspondent theorems have to
be involved. However it seems very simple to write a program which depends on the Fermat
theorem’s truth. Easy to realize that understanding the properties of such a program will
be close to incomprehensible for an ordinary observer.

215 The latest point is commonly referred to as a main incapability of formal methods. It lies
in the so-called halting problem[25] originally formulated for abstract Turing machines.
Informally speaking it means that there is no universal program which can reason about
any other input program if the latter uses wide enough grammar. Simpler, one cannot
write a program which can prove that any given other program halts or runs infinitely.

216 As a result we see deep incompleteness of any formal method we can use to reason about
programs. However the internal contradiction is the following: we have the powerful mech-
anism to speak about program properties, much more powerful than any testing suite
can even imagine but it is limited by the very nature of mathematics. There are many
engineering approaches to mix the methods, verifying core parts and testing a less sensi-
tive environment, modelling core program behaviour or underlying protocols in simplified

36

sandboxes and many others.
217 However we think that the root of the problem is that humans search for a more ex-

pressive way to write programs where the more expressive the meaning is - the less it is
understandable by other programs.

218 Having the given problems the keys to look for a solution are quite simple:

• every programming engineer knows or believes why her program halts or works prop-
erly and she can answer the direct question why it is so - otherwise there is a good
motive to rewrite or refactor;

• nobody really wants to write a program with uncertain properties for production
use. Instead of analyzing a program’s correctness by external tools, we might give
a programmer tools where she can explain why her program should work like this.
Moreover in most of the cases it is quite self explanatory.

219 What we propose to have in Everscale for the good of formal methods and making contracts
secure by construction:
We are not going to limit engineers to express their ideas in the most suitable programming
language;

• “Good lenses”: the tool to look into the state on the stage of programming, not
running or testing. This requires adequate blockchain model and REPL driven de-
velopment where every step is depicted in the nearby and gives the correct feedback;

• “Good configurator”: the tool to express the willingness of both engineer and de-
signer. This tool is an ultimate part - the better we can be self-explanatory, the
better all the next parts will work.

• “Good programming language”. We actually have it (choose any). We need to add
some “steroids” for further steps. Ideally to have a language where we can express
a trinity: a specification, a program itself and a proof (which actually Coq[26] does
but in a too purist way).

– This language can be embedded to the prover bidirectionally. If one likes to
verify the already written program she can translate it, embed it in the prover
and verify in a friendly environment. Conversely, if one likes to write a more
strict program, having the immediate possibility to prove its behaviour - do it
inside the prover having minimum differences to “normal” programming process
and after satisfaction with proofs - translate it to compilable language, build and
deploy.

– The “steroids” mentioned are the possibility to do it instantly, not dividing by
phases. The ideal configuration is “write a bit of spec, then write a bit of code,
then write a bit of proof, and loop again based on feedback”. Humanity can do

37

the last three steps more or less acceptable, but without specification one still
is unaware of what she really codes.

• “Good prover”. There are a lot of them, no actual need to have a new one. The
problem is to embed the specification and program into.

• “Good automation”. We actually need a solver which helps us to think on the level
of abstraction we are used to, solving all easier tasks in more or less invisible mode
(in background). That is purely an engineering task: the more code of automation
- the more actual automation. Good practice here is to cover most common cases:
find the most common pattern of propositions, automate reasoning about it, see what
remains. Good heuristics and machine learning will not harm. This part is not so
time sensitive.

220 Distributed programming (see below) greatly increases capability to do formal verification
of programs simply due to the fact they become smaller and less complicated. Also it
significantly increases reuse of formally verified code within the ecosystem.

Distributed programming

221 Usually in a blockchain the address is associated with some cryptographic key which means
that in order to create a new address one needs to generate a new key pair and calculate the
address from its public key. Everscale Address is calculated from initial data and a contract
code. Every address in the active (called “initialised”) state has a deployed smart contract
code. This code can be the original code from which the address was originally calculated
or a different code in which case it means the “setcode” instruction has been used to update
the code. If the initial contract code does not have a setcode function in it, the Everscale
address will unambiguously correspond to the code. Non-active (called “uninitialised”)
addresses can only receive tokens if sent as a message with a special (unbounce) flag. They
can not perform any operations.

222 This unique feature of Everscale has several implications. For example a user key can have
an infinite number of addresses which depend on the initial data and code of a contract
deployed on it. The ability to calculate addresses from the data and the code of the smart
contract and then updating these without changing the address, makes the whole Everscale
blockchain — an advanced key-value store. The difference with a simple key-value store
for example, would be that the address (which is a value in this case) depends on two keys
(contract initial data and its code). Each of the keys could be viewed as a separate hash
array in terms of the database. That allows the creation of subsets of arrays which would
have one unique key.

223 A code associated with a Ever OS address can be verified by another address and therefore
be trusted. History of address code mutations including initial data and code that was

38

produced by a known source (cryptographic key or another address) is provided as well (as
described in “File system” section).

224 This web of trust allows a completely new way to program a blockchain application. Now we
can fully trust the behaviour of a particular address and therefore assume the immutability
of its input and outputs. We can distribute almost any business logic across global ledger
entries without a need for any nested data structures. The ERC-20 type of contract
becomes obsolete and generally a bad practice. To program a hashmap inside a contract
would mean to program a database within a key-value database cell. Sometimes those
hashmaps are practical, but only to store some temporary, small structures. Think of it
as an application dynamic memory. What one would put in a program memory you may
store in a hashmap within a contract, if one would normally use a database to store an
object — use the whole Everscale blockchain as a key-value database. If one wants to store
large files, it is better to use a DriveChain which acts like a distributed Hard Disk.

225 Good question to ask when writing a program on Everscale: would this data structure be
better placed in a local memory or in a database? If the answer is the former — use a
hashmap, later — create an address.

226 Let’s think of a Everscale as a key-value store, where what has been used in address
calculation is a key and the address itself is a value. Then if we can find an address by
calculating over some keys, we can then retrieve and execute what is within that address.

227 Great example of this is the Everscale TIP-2 Certificate. Usually to create a record of
something on a blockchain one would make a ledger smart contract that would consist of
name and an address. Of course as with any other such contract the heavier the use of
that service the more complicated such a smart contract becomes, in the end one would
need to start thinking about sharding it somehow. And that is not trivial at all, or may
be entirely impossible.

228 In Everscale there is an elegant solution using a distributed programming paradigm:
229 For example, that is how a decentralized and distributed certificate system is implemented

in Everscale. As described in more details below, such a system is used in providing many
services which require a certified provable key-value store. For example, a Decentralized
Name Service (DeNS) is used as a basic filename and directory structure in the Ever OS
filesystem. Other uses include a Proof of Ownership / Prove of Purchase certificate and
many others.

230 Current solutions (for example a Everscale DNS[27]) are either large smart contracts which
maintain a full list of records, or a tree-like solution which shards the list based on some
parameters. Neither of these solutions are satisfactory due to a lack of scalability, high
costs of maintenance, long search time, single point of failure and so on.

231 Let’s take a look at TIP-2 implementation. Root is a smart contract that contains a Code
of Certificate smart contract without data. Root has methods for Certificate Issuance,
Certificate Code Retrieval, Root PubKey retrieval and Version history. Each Certificate
can become a Root, therefore a Root smart contract and its Certificate smart contract are
the same. The Code contains an address of its Root, therefore making it immutable.

39

232 When a User wishes to register a certificate, it calls a Certificate Issuance method in Root,
sending a Certificate Data (for example an alphanumeric string of a certificate body).

233 Root takes its Public Key and a Code of Certificate smart contract, inserts a Certificate
Data sent by a User, calculates the address of the Certificate and checks if the address
already has a Certificate or any other Code deployed by sending a bounced true message
calling the “getData” method.

234 If a contract exists it means that a Certificate with the same Certificate Data already exists.
The contract can then return registration information to the Root which will return it to
a User. If a contract does not exist the message will bounce to the Root smart contract
which would mean the Certificate can be registered.

235 If a Certificate does not exist, the Root will Issue the Certificate by deploying the Certificate
Contract with its Data. On deploy the Certificate will check that it has been deployed from
the root address by comparing the address of a Root inside with the deployer address. If
there is no match the deploy will fail.

236 Of course additional business logic steps could be included between the last two steps, such
as monetization or other mechanics as shown below in one of the examples.

Resolving

237 To resolve the Name, any User can now call the Get method “Resolve” of a Root locally
to obtain an Address. Root will use the Certificate Code, Root PubKey, insert a name the
User wishes to resolve into the Certificate Code and calculate the address.

238 A user application can cache the Certificate Code smart contract and Root PubKey once,
after which resolving any name is achieved locally with a simple address calculation, with
no need for network connection at all, therefore making it the fastest certification system
in the world.

239 Knowing a Certificate Code hash enables retrieving all smart contracts having the same
hash by simply querying the blockchain state. Decoding contract data will produce a full
list of names under a specific Root. It would be quite easy to produce a table with all the
certificate records.

240 The Certificate itself contains variable types of addresses of target smart contracts to which
the Certificate owner wishes the name to point. A user should choose which type of address
they wish to use.

Reverse resolution via Index smart contract

241 A lot of times even the advanced key-value store won’t be enough. For example a user
deploys some multisig wallet with several custodians public keys. Now how could that user
keep track of all such multisig contracts she deployed? And even more interestingly, how

40

the custodians she has added could keep track of all multisigs they are custodians in.
242 Let’s deploy an index for each of the multisig owners. Initial data will have an owner

account address for which the index is created (which will be used as a pointer to a contract
we are looking for) and the code will be an index certificate code plus the custodian public
key.

243 Now we only need to know the certificate code (which is public information) to add a public
key to collect pointers to all target smart contracts.

DeBots

244 DeBot — is a smart contract facilitating conversation-like flow communication with a target
smart contract. Instead of a usual smart contract, DeBots are executed locally. They work
with target smart contracts providing a user interface to their functions. DeBot can work
with one or many smart contracts, DeBots can also invoke each other, transparently to
the user. DeBot prepares a message that it will send to a target smart contract (or smart
contracts), but before it does it will emulate all the chain of transactions on a local user
machine verifying and letting the user verify its correctness. DeBots are extremely powerful
user technology, simplifying for the first time complicated interaction with a smart contract
or systems of smart contracts.

245 DeBots are completely decentralized by nature. They do not require any servers in between
full nodes and a user device. There are no centralized or decentralized layers which clog
user experience, like Web 3. Since DeBots run locally for all its phases, except for final
message sending, they work much faster than any web or decentralized application. Using
Pipes, DeBots can be presented to the user as a single action, interactive action flow, a
form, a web page and so on (see below).

246 Users are interacting with DeBots via DeBot Browsers. Browsers contain the DeBot Engine
(or DEngine) which takes care of running DeBots and providing D’Interfaces support.

247 D’Interfaces allows DeBots to receive input from users; query info about other smart con-
tracts; query transactions and messages; receive data from external subsystems (like file
system) and external devices (like NFC, camera and so on); call external function libraries
that allow to do operations that are not supported by VM. For example, work with json,
convert numbers to string and vice versa, encrypt/decrypt/sign data.

248 Every DeBot browser should strive to support D’Interface standards which are proposed,
discussed and finalized in DeBot Interface Consortium (DeBot IS Consortium[28]).

Pipes

249 In Unix Pipe (or Pipeline) are some processes chained together, so that the output text of
such a process (stdout) is passed directly as input (stdin) to the next one. The concept

41

has two reincarnations in Ever OS.
250 Smart contracts that pass messages between each other, a design sometimes called “com-

posability”, are actually a pipeline. Everscale composability is built in because of its
asynchronous nature, mandatory delivery of messages in a particular order and the nature
of all addresses having a smart contract code associated with them.

251 But there are also pipelines in DeBots, so users can create DeBots as a single scenario that
could be activated and finished possibly without any user interaction. We call this type of
DeBot scenarios — Pipes.

252 Using Pipes, third-party applications can call DeBots as services in a non-interactive mode
(or in semi-interactive mode) and receive responses as a result.

253 This allows users to compact the DeBot interaction into a single action (like tapping on
a button or double clicking). Now applications can draw a custom UI, collect inputs
from the user and then run DeBot’s certain scenario: read blockchain data, send on-chain
transactions and so on - and receive answers.

254 DeBot Browser can run as a standalone instance without UI components. Browser should
isolate DeBot communication with the user and automatically insert necessary inputs for
DeBots using the DeBot Pipe. DeBot Pipe defines which function to call to start DeBot
(by default, it is the start function without arguments) and what values should be passed
to DeBot on each interface call or approve request.

Code Handling

255 Git, a creation of Linus Torvalds, the father of Linux, revolutionized the source control
systems space in 2005. Most of the software development has been moved to Git since.
Usually organisations host their own Git installation or rely on cloud providers such as
GitLab for their repository management. This model did great things to the whole software
industry in general and open source in particular over the last 15 years.

256 For centralized projects, even if they are open source, the centralized Git repository may
make sense. Though we would argue that virtually all free software projects in fact require
a decentralized organization, decentralised governance model, through the DAO with some
form of Meritocratic Token Distribution. We argue that without these components, man-
aged by a foundation or just a group of independent contributors these projects can not be
regarded as true Free Software. Today pure Free Software projects must be decentralized,
or it just does not make any sense.

257 Moreover if we are talking about decentralized projects and their code it is simply absurd for
them to use a centralized Git repository. It presents risks that nullify all their decentralized
governance efforts. Yet almost all blockchain projects are holding their code in a centralized
repository today, and therefore can not claim decentralization as one of their properties.
The time will come when software repository content will be subject to the same censorship
as centralized internet today. Like social networks ban political figures or just simple

42

citizens expressing their contrarian views with fake-morality arguments, the time will come
when repository code will be censored for the same reasons.

258 In this section we particularly are talking about how these and other DAOs should manage
their code to avoid centralization and censorship.

259 Git development today requires a centralized management of repository rights. With de-
centralized tools repository keys could be dynamically managed by a set of smart contracts.

260 Governance tokens could be distributed among project stakeholders according to their
ever-changing rights. Such tokens on top of repository management abilities will give its
holders a stake in the ecosystem such a project aims to create.

261 Tokens can be minted based on inherited repository performance metrics, such as forks,
followers, external and internal commits, reviews, releases and so on. Important deci-
sions regarding the project’s future would be taken using decentralized governance tools
developed in Everscale.

262 Once an ecosystem is created and growing, such tokens can then naturally transform into
the project’s cryptocurrency supporting any monetization model the project chooses to
adopt. Helping rewarding long-term contributions to the repository as well as inclusion of
new members and investors.

263 To support such decentralization with immutability of the Git repository, an append-
only Git database can be moved to a high performance, low latency Everscale blockchain
entirely. In fact, without such a move no project could claim decentralization because of a
centralized way its code is managed. Simply speaking, putting Git on Everscale should be
viewed as a must-have Everscale objective.

264 Fortunately there is no problem using Ever OS to build a decentralized Git. The tree struc-
tures work very well with Ever OS and blobs of code can be easily stored on DriveChain.

Upgradability

265 There is no problem putting a code of a protocol upgrade to the network and announcing
the availability of it within some block. The problem starts when such a code is not
backward compatible. The network partitioning will evidently happen as a result of such
code spontaneous upgrade of network nodes.

266 To tackle that, the Ever OS upgrade procedure should be as follows. The code should
be pushed into the production branch in the DeGit repository which will upload it to the
DriveChain and upgrade a smart contract responsible for network code upgrade. Once
validators detect such an upgrade is available, they should start a fresh node with such an
upgrade, sync with the necessary WorkChain and a MasterChain and signal their avail-
ability for validation to the D’Elector contract of choice. The D’Elector will launch a
pre-validation procedure that will verify fake blocks with new versions until the necessary
number of such nodes are available on the network. Whenever that happens, the D’Elector
will issue a key block in which the new validator set becomes the active one. The next

43

block after the keyblock will have a new format, a new version and no blocks produced by
the old software will be accepted.

Conclusion. The Evolution

In this paper we presented a system with practically unlimited scalability, practically sub-
second finality and practical security guarantees of more than that of Bitcoin. It has the
capacity to run any Internet application including messengers, social networks and emails
we have today in a censorship resistant, decentralized way. It can grow a validator set to
hundreds of thousands of nodes, while preserving all its performance and user experience
characteristics. We also describe an economy and governance model to accommodate
further development of the network without sacrificing decentralisation.

On 30 of August 2021 a little over a year from the launch of Everscale the internal network
running the latest version of Ever OS broke the world record of transactions per second
reaching more than 53,000 tps of real smart contract executions. The Kernel configuration
that was used consisted of 150 nodes running 10 Workchains configured for 32 threads
each, using 1 Gb connectivity. Next day more than 350 independent validators residing in
different datacenters joined that same network and set a record of appr. 45,000 tps. No
network before has ever reached such numbers, but what it has really proved is that the
Ever OS design can scale to practically unlimited capacity with the increase in number of
validators via dynamic Kernel reconfiguration.

The above numbers show that Everscale network design can accommodate decentralization
of all the current and future internet applications.

We have described that to achieve decentralization the blockchain technology must be
inseparable from its economy and governance. The governance and economics model pre-
sented here achieves malleability by a set of adjustable rules executed by the community
of users, hodlers and developer-entrepreneurs. BFT Governance set of protocols ensures
flexible self governance of a protocol and ecosystem development.

###

Once when my daughter was young she got a gift. It was a beautiful tropical butterfly.
It had very large wings. When opened they resembled a flying owl head, when closed an

44

incredibly precise picture of a sneak head. The camouflage was of course the result of
millions of years of evolution. All butterflies whose camouflage was wanting have died.
We as humans possess a brain. It tweaks natural selection into our favour by intelligent
decisions. A great tool, if used correctly. Unfortunately no human brain always makes only
correct decisions. In fact, our brain was enhanced through evolution by natural selection
of the buoyant while people who made wrong decisions died, like butterflies. In fact any
human will make lots of wrong decisions during their lifetime, sometimes deadly ones. Some
wrong decisions will be deadly to a whole group of people if made by their leadership. The
democratic process of power delegation tries to mitigate a decision by a group by choosing
a leadership that would make less mistakes. Many times this process fails simply because
the decision of many does not prevent it from being wrong. Look no further than the
German elections of 31 July 1932. The only way to enhance the survival of the human
race and avoid more deadly mistakes is to stop delegating vast amounts of power to small
groups of leaders for arbitrary decision making.

Decentralized Operating System is a technology that allows people to reach consensus in
discrete, spontaneous governance groups about arbitrary subjects formulated as software
code without a need to trust each other. It enables us to avoid a need to delegate power and
to accept the fact that many decisions simply can not be predicted as either right or wrong
at the time they are taken because of our inability to look into the future. Decentralization
is a framework to make governance mistakes without global consequences.

Acknowledgements

There are dozens of people, hundreds of authors and thousands of Everscale community
members who have directly or indirectly helped write this paper. Here I would like to
mention by name just a handful of people who had a direct contribution to the ideas,
implementation and formalization of different concepts described in it.

Because of the sheer volume of the topics to cover, this paper should be viewed more like
a framework of ideas and design blueprints to be further discussed in separate documents,
some of which are already available (links to them are provided throughout the paper) and
some are still under development.

I feel privileged to work with most talented people in their respective areas: Pavel Prigolovko,
Andrey Lyashin, Dmitry Shtukenberg, Leonid Kholodov, Kirill Zavarovsky, Nikita Mona-
hov, Anton Serkov, Andrew Zhogin, Slava Belenko, Boris Ivanovsky, Sergey Yaroslavtsev,
Victor Bargachev, Igor Kovalenko, Alexey Shistko, Michael Skvortsov, Michael Vlasov,
Ekaterina Pantaz, Vasily Selivanov, Luca Goroshevsky, Ivan Suvorov

45

Special thanks goes to all those who contributed to editing: Eugene Morozov, Joanne
Eberhardt and Benjamin Bateman.

References

[1] Free TON. The Declaration of Decentralization. URL: https://freeton.org/dod.

[2] Everscale. Ever Operating System. URL: https://everos.dev.

[3] Emanuel Lasker, 2008. Lasker’s Manual of Chess. Russell Enterprises, Inc, Milford,
CT.

[4] Letter from John Adams to Abigail Adams. 7 July 1775.

[5] George Orwell. 1984, 1948. URL: https://en.wikipedia.org/wiki/Nineteen_

Eighty-Four.

[6] Borg. URL: https://en.wikipedia.org/wiki/Borg.

[7] Eugen von Böhm-Bawerk, 2007. Capital and Interest.1st edition, p. 362.

[8] Nassim Nicholas Taleb. Antifragile, 2012. URL: https://en.wikipedia.org/wiki/
Antifragile.

[9] N. Gregory Mankiw, 2007. ”2”. Macroeconomics (6th ed.). New York: Worth Pub-
lishers. pp. 22–32. ISBN 978-0-7167-6213-3.

[10] Cointelegraph, 2020. Hive Hard Fork is Successful, STEEM
Crashes Back to Earth. URL: https://cointelegraph.com/news/

hive-hard-fork-is-successful-steem-crashes-back-to-earth.

[11] Nikolai Durov. URL: https://en.wikipedia.org/wiki/Nikolai_Durov.

[12] What is multithreading. URL: https://www.guru99.com/

cpu-core-multicore-thread.html#4.

[13] Byzantine fault tolerance. URL: http://en.wikipedia.org/wiki/Byzantine_

fault_tolerance.

[14] Vitalik Buterin. Proof of stake: How i learned to love weak sub-
jectivity, 2014. URL: https://blog.ethereum.org/2014/11/25/

proof-stake-learned-love-weak-subjectivity/.

[15] Megan Leonhardt. GameStop is being called a ‘pump and dump’ scheme—here’s
what you need to know. URL: https://www.cnbc.com/2021/01/28/

gamestop-now-called-a-pump-and-dump-scheme-what-you-need-to-know.html.

46

https://freeton.org/dod
https://everos.dev
https://en.wikipedia.org/wiki/Nineteen_Eighty-Four
https://en.wikipedia.org/wiki/Nineteen_Eighty-Four
https://en.wikipedia.org/wiki/Borg
https://en.wikipedia.org/wiki/Antifragile
https://en.wikipedia.org/wiki/Antifragile
https://cointelegraph.com/news/hive-hard-fork-is-successful-steem-crashes-back-to-earth
https://cointelegraph.com/news/hive-hard-fork-is-successful-steem-crashes-back-to-earth
https://en.wikipedia.org/wiki/Nikolai_Durov
https://www.guru99.com/cpu-core-multicore-thread.html#4
https://www.guru99.com/cpu-core-multicore-thread.html#4
http://en.wikipedia.org/wiki/Byzantine_fault_tolerance
http://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://www.cnbc.com/2021/01/28/gamestop-now-called-a-pump-and-dump-scheme-what-you-need-to-know.html
https://www.cnbc.com/2021/01/28/gamestop-now-called-a-pump-and-dump-scheme-what-you-need-to-know.html

[16] Mitja Goroshevsky and Leonid Kholodov. Practical Byzantine Dy-
namic Slashing (PBDS). URL: https://forum.freeton.org/t/

practical-byzantine-dynamic-slashing-pbds/2519.

[17] Gregory Neven Dan Boneh, Manu Drijvers. BLS Multi-Signatures With Public-
Key Aggregation. URL: https://crypto.stanford.edu/~dabo/pubs/papers/

BLSmultisig.html.

[18] What is GNU/Linux? URL: https://www.debian.org/releases/buster/amd64/
ch01s02.en.html.

[19] Boris Ivanovsky. Tonix. URL: https://github.com/tonlabs/tonix.

[20] Jehan-Francois Paris and Thomas J. E. Schwarz. Merkle Hash Grids Instead of Merkle
Trees. URL: https://www.researchgate.net/publication/344603589.

[21] The LLVM Compiler Infrastructure. URL: https://llvm.org/.

[22] Leonid Kholodov and Dmitry Borisenkov. Towards better code generator design and
unification for a stack machine.

[23] Jacques Hadamard. Essai sur la psychologie de l’invention dans le domaine mathema-
tique, 1959. Paris.

[24] Gödel’s incompleteness theorems. URL: https://en.wikipedia.org/wiki/G%C3%

B6del%27s_incompleteness_theorems.

[25] Halting problem. URL: https://en.wikipedia.org/wiki/Halting_problem.

[26] The Coq Proof Assistant. URL: https://coq.inria.fr/.

[27] Introduction to TON DNS. URL: https://test.ton.org/DNS-HOWTO.txt.

[28] DeBot Interface Specifications (IS) Consortium. URL: https://github.com/

tonlabs/DeBot-IS-consortium.

47

https://forum.freeton.org/t/practical-byzantine-dynamic-slashing-pbds/2519
https://forum.freeton.org/t/practical-byzantine-dynamic-slashing-pbds/2519
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html
https://www.debian.org/releases/buster/amd64/ch01s02.en.html
https://www.debian.org/releases/buster/amd64/ch01s02.en.html
https://github.com/tonlabs/tonix
https://www.researchgate.net/publication/344603589
https://llvm.org/
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://en.wikipedia.org/wiki/Halting_problem
https://coq.inria.fr/
https://test.ton.org/DNS-HOWTO.txt
https://github.com/tonlabs/DeBot-IS-consortium
https://github.com/tonlabs/DeBot-IS-consortium

	Preamble
	Chapter one. Everscale
	Chapter two. Ever Kernel (EK)
	Chapter three. Ever Operating System
	Chapter four. Web Free
	Conclusion. The Evolution
	###

